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Abstract

We consider the free response of a nonlinear vibrating system. Using the ridges and skeletons of the continuous

wavelet transform, we identify weak nonlinearities on damping and stiffness and estimate their physical parameters.

The crucial choice of the son wavelet function is obtained using an optimization technique based on the entropy

of the continuous wavelet transform. The method is applied to simulated single-degree-of-freedom systems and

multi-degree-of-freedom systems with nonlinearities on damping and stiffness. Experimental validation of the non-

linear identification and parameter estimation method is presented. The experimental system is a clamped beam

with nonlinearities on damping and stiffness and these nonlinearities are identified and quantified from a displacement

sensor.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The identification and estimation of nonlinear parameters in vibrating systems is very important when
models for the prediction of systems performance are developed. A number of techniques for nonlinear system
identification have been developed. These techniques can be divided into two categories according to the
choice of model form. The first category, mainly used in control engineering, deals with the first-order state
space equation. The second category, mainly used in mechanical engineering, deals with the second-order
equations of motion derived from Newton laws. In this paper we consider the second category. A number of
procedures have been proposed for the identification of nonlinearities in vibrating systems. Of these, the
application of the Hilbert transform to the impulse response of the system provides information about
instantaneous amplitude and phase of the signal. Relationships between the instantaneous amplitude and
frequency and between instantaneous amplitude and damping are constructed. Backbone and damping curves
are then plotted by Feldman [1]. The Hilbert transform gives effective results for single-degree-of-freedom
(sdof) systems. Applications to multi-degree-of-freedom (mdof) systems have proved difficult since the
ee front matter r 2005 Elsevier Ltd. All rights reserved.

v.2005.09.021

ing author.

esses: minh_nghi.ta@edu.univ-fcomte.fr (M.-N. Ta), joseph.lardies@univ-fcomte.fr (J. Lardiès).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS
M.-N. Ta, J. Lardiès / Journal of Sound and Vibration 293 (2006) 16–37 17
analysis requires band-pass filtration of the signal, in order to pick out each mode of interest and to reject all
the others. This can produce bad results for systems with close modes. An improvement can be achieved if the
wavelet transform is used instead of the Hilbert transform. A non-parametric identification technique is
presented by Masri and Caughey [2]. They use information about state variables of nonlinear systems to
express the system characteristics in terms of orthogonal functions. The method can be used with deterministic
or random excitation to identify arbitrary nonlinearities. However, the method requires information regarding
the displacement, velocity, acceleration and restoring forces acting on the system to determine by regression
techniques nonlinearities. A great effort has to be spent in processing the data. A spectral method for
identifying nonlinear structures has been proposed by Shyu [3]. This method uses a multichannel
autoregressive time-series model to calculate the higher-order coherence function which is used to identify
the order of nonlinearity. The method uses short record length and is very useful if the signals are transient or
only short data length is available. However, the proposed procedure dealt only with the qualification or
identification of the type of nonlinearities. The quantification of nonlinearities is not studied. The extended
Kalman filter is an adaptation of the discrete Kalman filter and is used by Yun and Shinozuka [4] to determine
nonlinearities. The extended Kalman filter is obtained by linearizing the nonlinear model into a Taylor series
expansion. Yun and Shinozuka add a smoothing filter to improve results. Yang and Lin [5] present an
on-line adaptive tracking technique, based on the recursive least-squares estimation, to identify the system
parameters and their changes of nonlinear hysteretic structures. The tracking algorithm is based on the
adaptation of the current measured data to determine the parameter variations, so that the residual error is
contributed only by noises. The method uses displacement, velocity and acceleration to determine a recursive
solution of system parameters. Simulation results, using sdof and 2dof, for nonlinear hysteretic structures are
presented in the paper [5].

The continuous wavelet transform is a method that converts a time response representation in 1D
space into a time–frequency response in 2D space. The continuous wavelet transform technique has
the advantage that it requires to measure only the displacement or velocity or acceleration of the system.
It is not necessary to know displacement and velocity and acceleration simultaneously as in the case of
non-parametric identification methods. The continuous wavelet transform has been used successfully to
obtain natural frequencies and damping ratios of linear vibrating systems. Numerical and experimental
results are presented in Refs. [6–10]. Identification of nonlinear systems using the continuous wavelet
transform has been studied by Staszewski [11], Argoul and Le [12], Garibaldi et al. [13] and Lenaerts et al. [14].
Staszewski [11] uses the Morlet wavelet as analysing function and presents two simulated examples. The
first example analyses a sdof system with Coulomb friction and cubic stiffness nonlinearities. The second
example analyses a 2dof system with cubic stiffness nonlinearities. These nonlinearities are identified
but not quantified. In Ref. [12], Argoul and Le consider the Cauchy wavelet as analysing function
and use accelerometer responses of a clamped beam. With limitation to the first mode, they represent the
beam by an oscillator with a cubic nonlinearity and a weak viscous damping. In Ref. [13] Garibaldi
et al. identify only nonlinear damping mechanisms using the continuous wavelet transform. In Ref. [14]
Lenaerts et al. identify a nonlinear system using two different method: a method based on the continuous
wavelet transform and a method using the restoring force surface. Both techniques exploit the system free
response and results in the estimation of linear and nonlinear physical parameters are giving using
experimental data.

In this paper we use the continuous wavelet transform to identify and quantify weak nonlinearities of
vibrating systems. Numerical and experimental results using a clamped beam with different classes of
nonlinearities on damping and stiffness are presented.

This paper is organized as follows. In Section 2 the approximate equations of amplitude and phase are
derived for a sdof system with nonlinearities on damping and stiffness. In Section 3 the continuous wavelet
transform and its properties are introduced. A wavelet entropy technique is used to determine the optimal
value of a parameter used with the analysing wavelet function. The main concept of continuous wavelet
transform ridges, skeletons and free response recovery procedures are also described. In Section 4 we apply the
method to simulated sdof and mdof systems with nonlinearities on damping and stiffness. Experimental
validation of the method is presented using a clamped beam with nonlinearities on damping and stiffness. This
paper is briefly concluded in Section 5.
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2. Response of a nonlinear sdof system

2.1. General case

Consider the general differential equation governing the free vibration of systems having a sdof

€xþ o2
nxþ ef ðx; _xÞ ¼ 0, (1)

where on is the natural angular frequency of the linear system, e is a small dimensionless parameter and f ðx; _xÞ
a general nonlinear function of displacement x and velocity _x. The dot indicates time derivative, as usual. It is
well known that for the corresponding linear problem (e ¼ 0) the solution is xðtÞ ¼ A cos ontþ bð Þ where A

and b are constants. For the determination of the analytical solution of Eq. (1) we use the method of
Krylov–Bogoliubov [15–17], called also the averaging method. Using this method a solution to a nonlinear
equation (1) can be sought in the form

xðtÞ ¼ AðtÞ cos ontþ bðtÞð Þ ¼ AðtÞ cos jðtÞð Þ, (2)

where jðtÞ ¼ ontþ bðtÞ; A(t) and jðtÞ are the amplitude and phase modulation of the system free response
which are time-dependent functions. However, this procedure introduces an excessive variability into the
solution; consequently, an additional restriction may be introduced: it is convenient to require the velocity _xðtÞ
to have the same form as the harmonic oscillator. We obtain then:

_AðtÞ cos jðtÞð Þ � AðtÞ _bðtÞ sin jðtÞð Þ ¼ 0. (3)

The second derivative of the assumed solution is now formed and these relations are introduced into the
differential equation (1) to obtain

on
_AðtÞ sin jðtÞð Þ þ onAðtÞ _bðtÞ cos jðtÞð Þ ¼ ef AðtÞ cos jðtÞð Þ;�onAðtÞ sin jðtÞð Þð Þ. (4)

Solving Eqs. (3) and (4) for _AðtÞ and _bðtÞ we obtain

_AðtÞ ¼
e
on

sin jðtÞð Þf AðtÞ cos jðtÞð Þ;�onAðtÞ sin jðtÞð Þð Þ, (5)

_bðtÞ ¼
e

onAðtÞ
cos jðtÞð Þf AðtÞ cos jðtÞð Þ;�onAðtÞ sin jðtÞð Þð Þ: (6)

The second-order nonlinear differential equation (1) has been transformed into two first-order differential
equations for AðtÞ and bðtÞ. The expression for _AðtÞ and _bðtÞ may now be expanded in Fourier series

_AðtÞ ¼
e
on

K0ðAÞ þ
Xr

n¼1

KnðAÞ cos njðtÞð Þ þ LnðAÞ sin njðtÞð Þ½ �

( )
, (7)

_bðtÞ ¼
e

onAðtÞ

� �
P0ðAÞ þ

Xr

n¼1

½PnðAÞ cos njðtÞð Þ þQnðAÞ sin njðtÞð Þ�

( )
, (8)

where

K0ðAÞ ¼
1

2p

Z 2p

0

sin jðtÞð Þf AðtÞ cos jðtÞð Þ;�onAðtÞ sin jðtÞð Þð Þ dj, (9)

P0ðAÞ ¼
1

2p

Z 2p

0

cos jðtÞð Þf AðtÞ cos jðtÞð Þ;�onAðtÞ sin jðtÞð Þð Þ dj. (10)

During one cycle, the variation of _AðtÞ and _bðtÞ is small because of the presence of the small parameter e in
Eqs. (7) and (8). Hence, the average values of _AðtÞ and _bðtÞ are considered. Since the motion is over a single
cycle, and since the terms under the summation signs are of the same period and consequently vanish, we
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obtain approximately:

_AðtÞ ¼
e
on

K0ðAÞ ¼
e

2pon

Z 2p

0

sin jðtÞð Þf AðtÞ cos jðtÞð Þ;�onAðtÞ sin jðtÞð Þð Þ dj, (11)

_bðtÞ ¼
e

onAðtÞ

� �
P0ðAÞ ¼

e
2ponAðtÞ

� �Z 2p

0

cos jðtÞð Þf AðtÞ cos jðtÞð Þ;�onAðtÞ sin jðtÞð Þð Þ dj. (12)

These two equations allow to easily obtain an approximate analytical solution describing the free behaviour of
a sdof system, for different forms of the nonlinear function f ðx; _xÞ.

2.2. Envelope and phase of a nonlinear damping system

By application of the above procedure consider a composite damping system which is defined by

ef ð _xÞ ¼
Xp

i¼0

mi _xj j
i sgnð _xÞ, (13)

where p is the order considered in the damping system and mi is the ith damping coefficient normalized to the
mass. The approximate free response of a sdof system with a composite damping can be obtained using Eqs.
(11) and (12)

_AðtÞ ¼ �
1

pon

Z p

0

Xp

i¼0

mio
i
nAiðtÞ siniþ1j dj

¼ �
Xp

i¼0

1ffiffiffi
p
p mio

i�1
n

Gði=2þ 1Þ

Gði=2þ 3=2Þ
AiðtÞ ¼

Xp

i¼0

ciA
iðtÞ, ð14Þ

where G is the function gamma [16] and

ci ¼ �
1ffiffiffi
p
p mio

i�1
n

Gði=2þ 1Þ

Gði=2þ 3=2Þ
, (15)

_bðtÞ ¼
1

2ponAðtÞ

Z 2p

0

Xp

i¼0

mij � onAðtÞ sinðjðtÞÞji sgn �onAðtÞ sin jðtÞð Þð Þ cosj dj ¼ 0. (16)

This value implies that for a composite damping mechanism the phase angle b(t) does not change over time:
bðtÞ ¼ b0 which is constant. It is important to note that nonlinearities on damping have only an impact on the
envelope A(t) and they do not affect the phase b(t) which remains constant.

Our objective is to determine A(t), _AðtÞ and use Eq. (14) for the identification of the order p and the
estimation of coefficients ci. The envelope A(t) will be determined from the ridges of the continuous wavelet
transform presented in the next section. From the couple (p; ci), it is easy to identify the composite damping
mechanism and to quantify the damping coefficients mi from Eq. (15). For example, if we have a second-order
composite damping system (p ¼ 2) with Coulomb damping (m0), linear damping (m1) and square damping (m2),
we obtain: _AðtÞ ¼ c0 þ c1AðtÞ þ c2A

2ðtÞ with the coefficients

c0 ¼ �
2m0
pon

; c1 ¼ �
m1
2
; c2 ¼ �

4onm2
3p

.

2.3. Envelope and phase of a nonlinear damping and nonlinear stiffness system

Consider a sdof system with nonlinearities on damping and stiffness of the form

ef ð _x; xÞ ¼
Xp

i¼0

mi _xj j
i sgnð _xÞ þ Zq xj jq sgnðxÞ, (17)
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where Zq is the qth order mass normalized nonlinear stiffness. The expression for _AðtÞ is the sum of two terms:
the term due to nonlinear damping and the term due to nonlinear stiffness. Using Eq. (11) we obtain

_AðtÞ ¼ _A1ðtÞ þ _A2ðtÞ (18)

with

_AðtÞ ¼ �
1

pon

Z p

0

Xp

i¼0

mio
i
nAiðtÞ siniþ1j dj

¼ �
Xp

i¼0

1ffiffiffi
p
p mio

i�1
n

Gði=2þ 1Þ

Gði=2þ 3=2Þ
AiðtÞ ¼

Xp

i¼0

ciA
iðtÞ, ð19Þ

_A2ðtÞ ¼
Zq

2pon

Z 2p

0

sin jðtÞð ÞjAðtÞ cos jðtÞð Þjq sgn AðtÞ cos jðtÞð Þð Þ dj ¼ 0. (20)

It is important to note that nonlinearities on stiffness does not affect the amplitude decay of the signal; only
nonlinearities on damping affect the envelope of the signal. The expression for _bðtÞ is again the sum of two
terms: the term due to nonlinear damping and the term due to nonlinear stiffness. Using Eq. (12) we obtain

_bðtÞ ¼ _b1ðtÞ þ _b2ðtÞ (21)

with

_b1ðtÞ ¼
1

2ponAðtÞ

Z 2p

0

Xp

i¼0

mij � onAðtÞ sin jðtÞð Þji sgn �onAðtÞ sin jðtÞð Þð Þ cosj dj ¼ 0, (22)

_b2ðtÞ ¼
Zq

2ponAðtÞ

Z 2p

0

jAðtÞ cos jðtÞð Þjq sgn AðtÞ cos jðtÞð Þð Þ cosj dj;

_b2ðtÞ ¼
ZqAq�1ðtÞ

2on

½1þ ð�1Þqþ1�
Gðqþ 2Þ

2qþ1ðGðq=2þ 3=2ÞÞ2

" #
¼ rqAq�1ðtÞ, ð23Þ

where

rq ¼
Zq

2on

½1þ ð�1Þqþ1�
Gðqþ 2Þ

2qþ1ðGðq=2þ 3=2ÞÞ2

" #
. (24)

It is important to note that nonlinearities on damping do not affect the phase of the signal. Only nonlinearities
on stiffness have an influence on the phase bðtÞ of the signal. Our objective is to determine _bðtÞ and use
Eqs. (23) and (24) for the identification of the order q and quantification of nonlinearities on stiffness from rq.
For example if we consider a Duffing oscillator where a cubic stiffness is used (q ¼ 3) we have r3 ¼ 3Z3=8on.
The phase bðtÞ will be determined from the ridges of the continuous wavelet transform presented in
the next section.

3. The continuous wavelet transform

3.1. Definitions and theoretical background

The Fourier transform of a function (or a signal) x(t) is a linear transformation based on the decomposition
of this function in terms of a basis of elementary functions e�jot and is given by

TF x½ � ¼ x̂ðoÞ ¼
Z þ1
�1

xðtÞe�jot dt. (25)

This decomposition does not give any local time information about the function xðtÞ. A localized
decomposition can be obtained using the continuous wavelet transform. Under assumptions that all functions
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xðtÞ satisfy the condition Z þ1
�1

jxðtÞj2 dto1 (26)

which implies that x(t) decays to zero at �1, as in the case of Fourier analysis, the idea of the continuous
wavelet transform is to find a function cðtÞ which can generate a basis for the entire space of functions xðtÞ. If
the decay of this function is very fast, this function is called a small wave or a wavelet. The fast decay
introduces locality into the analysis, which is not the case of the Fourier transform where a global
representation is obtained. Using a family of basis functions, wavelets can be formulated to describe x(t) in a
localized time and frequency format. The continuous wavelet transform gives time and frequency information
about the analysed data. The continuous wavelet transform of the function xðtÞ is defined as [18,19]

Wc x½ �ða; bÞ ¼ hx;ca;bi ¼
1ffiffiffi
a
p

Z þ1
�1

xðtÞcn t� b

a

� �
dt, (27)

where cðtÞ is the analysing or mother wavelet and cn
ðtÞ the complex conjugate of cðtÞ; b is the parameter

localizing the wavelet function in the time domain: Wc x½ �ða; bÞ shows the local information about x(t) at the
time t ¼ b and a is the dilatation or scale parameter defining the analysing window stretching. The idea of the
continuous wavelet transform is to decompose a function xðtÞ into wavelet coefficients Wc x½ �ða; bÞ using the
basis of wavelet functions. The wavelet coefficients represent a measure of the similitude between the dilated
and shifted wavelet and the function xðtÞ at time b and scale a. Any function cðtÞ can be used as an analysing
wavelet if it satisfies the admissibility condition [18–20]

cc ¼

Z þ1
�1

jĉðoÞj2

joj
dooþ1, (28)

where ĉðoÞ is the Fourier transform of cðtÞ. It follows that ĉðoÞ is a continuous function, so that the finiteness
of cc implies that ĉð0Þ ¼ 0, or also that the mean value of cðtÞ in the time domain is zero:

Rþ1
�1

cðtÞ dt ¼ 0. The
admissibility condition is necessary to obtain the inverse of the wavelet transform [18,19]. The wavelet cðtÞ
must be also a window function to enable the possibility of time–frequency localization: cðtÞ decays at infinity,
which means that additionally Z þ1

�1

jcðtÞj dto1. (29)

If one assumes that cðtÞ is a rapidly decaying function in time domain, that is the values of cðtÞ are negligible
outside the interval (tmin, tmax), the transform becomes local.

We can see the frequency localization when the continuous wavelet transform is expressed in terms of the
Fourier transform. Using the Parseval identity [18–20], we can define the frequency domain formulation of the
continuous wavelet transform

Wc x½ �ða; bÞ ¼

ffiffiffi
a
p

2p

Z þ1
�1

x̂ðoÞĉ
n

ðaoÞejob do. (30)

This localization depends on the dilatation or scale parameter a.
A very useful property of the continuous wavelet transform is its linearity: the continuous wavelet transform

of P signals is

Wc

XP

i¼1

xi

" #
ða; bÞ ¼

XP

i¼1

Wc xi½ �ða; bÞ. (31)

This property is very convenient for the analysis of multi-component signals: it is possible to analyse each
component xi of a multi-component signal.

A number of different analysing functions have been used in the wavelet analysis. One of the most known
and widely used is the Morlet wavelet defined in the time domain as

cðtÞ ¼ e�t2=2ejo0t, (32)
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where o0 is the wavelet frequency. The dilated version of the Fourier transform is

ĉðaoÞ ¼
ffiffiffiffiffiffi
2p
p

e�1=2ðao�o0Þ
2
. (33)

In practice the value of o0 is chosen o0X5 which meets approximately the requirements given by condition
(28). Note that ĉðaoÞ is maximum at the central frequency oc ¼ o0=a and the Morlet wavelet can be viewed as
a linear band-pass filter whose bandwidth is proportional to 1/a or to the central frequency. Thus, the value of
the dilatation parameter a at which the wavelet filter is focused on the wavelet frequency can be determined
from a ¼ o0=oc.

In summary, the continuous wavelet transform analyses an arbitrary function xðtÞ only locally at
windows defined by a wavelet function. The continuous wavelet transform decomposes x(t) into various
components at different time windows and frequency bands. The size of the time window is controlled by the
translation parameter b while the length of the frequency band is controlled by the dilatation parameter a.
Hence, one can examine the signal at different time windows and frequency bands by controlling translation
and dilatation. However, constrained by the uncertainty principle [19], a compromise usually has to be
made choosing either a narrow time window for good time resolution, or a wide time window for good
frequency resolution. In order to control the shape of the analysing wavelet we introduce the modified Morlet
wavelet.
3.2. The modified Morlet wavelet and the wavelet entropy

We consider the Morlet wavelet function and introduce a parameter N which controls the shape of the basic
wavelet: this parameter balances the time resolution and the frequency resolution of the Morlet wavelet. The
modified Morlet wavelet function used in this paper is

cðtÞ ¼ e�t2=Nejo0t (34)

with N40 and whose dilated version of its Fourier transform is

ĉðaoÞ ¼
ffiffiffiffiffiffiffi
Np
p

e�N=4ðao�o0Þ
2
. (35)

An important value of N gives a narrower spectrum allowing a better frequency resolution, but at the expense
of time resolution. So, there always exists an optimal N that has the best time–frequency resolution for a
certain signal localized in the time–frequency plane. This modified Morlet wavelet function offers a better
compromise in terms of localization, in both time and frequency for a signal, than the traditionally Morlet
wavelet function. The optimal value of N is obtained by minimizing the entropy of the wavelet coefficients
introduced here.

We assume that the signal x(t) is given by sampled values fxðqÞg, q ¼ 1; 2; . . . ;Q. The total energy of this
sequence is

P
q jxðqÞj

2 and the values

pðqÞ ¼
jxðqÞj2P
q jxðqÞj

2
(36)

give the probability distribution of the signal’s energy in the time domain. Furthermore, in the wavelet
multiresolution analysis of the time series fxðqÞg the energy for each scale ai is

Eai ¼
X

j

jWc x½ �ðai; bjÞj
2. (37)

Eai is then obtained with a set of wavelet coefficients over a number of translations bj , given a particular scale
ai. As a consequence, the total energy can be obtained by Etotal ¼

P
i Eai. Then the normalized values,

pai ¼ Eai=Etotal, which represent the relative wavelet energy for i ¼ 1; 2; . . . ;M define by scale the probability
distribution of the energy. Clearly,

P
i pai ¼ 1 and the distribution {pai} can be considered as a time-scale

density. The Shannon entropy [21,22] gives a useful criteria for analysing and comparing these distributions,
since it provides a measure of the information of any distribution. Following the definition of entropy given by
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Shannon, we define the time varying wavelet entropy as

WE ¼ �
X

i

pai logðpaiÞ (38)

which measures the degree of disorder or unpredictability of energy in each continuous wavelet transform.
Using the modified Morlet wavelet there exists an optimal value of the parameter N obtained by minimization
of the wavelet entropy. An example is presented in the next section verifying the validity of the wavelet
entropy.

3.3. Ridge and skeleton of the continuous wavelet transform

Mallat [18] and Torresani [20] give the definition of a class of signals called asymptotic and present some
results for the time–frequency analysis of such signals. A signal of form (2) is asymptotic if the amplitude A(t)
varies slowly compared to the variations of the phase jðtÞ, or in a more rigorous way

_jðtÞ ¼ on þ
_bðtÞ40 and

1

_jðtÞ

����
���� _AðtÞAðtÞ

����
����oe, (39)

where e is a small real positive number. The analytic signal associated with the asymptotic signal is xaðtÞ ¼

AðtÞejjðtÞ and from this definition, Mallat [18] proposed the concept of instantaneous angular frequency as the
time varying derivative of the phase: oðtÞ ¼ _jðtÞ. The continuous wavelet transform of an asymptotic signal
xðtÞ is obtained by asymptotic techniques and is expressed as [18,20]

Wc x½ �ða; bÞ ¼

ffiffiffi
a
p

2
AðbÞejjðbÞĉ

n

a _jðbÞð Þ. (40)

Using the modified Morlet wavelet, we have

Wc x½ �ða; bÞ ¼

ffiffiffi
a
p

2

ffiffiffiffiffiffiffi
Np
p

AðbÞe�N=4ða _jðbÞ�o0Þ
2
ejjðbÞ. (41)

The square of the modulus of the continuous wavelet transform can be interpreted as an energy density
distribution over the time-scale plane. The energy of the signal is essentially concentrated on the time-scale
plane around a region called the ridge of the continuous wavelet transform. In other words, the ridge of the
continuous wavelet transform is the region containing the points defined by a ¼ aðbÞ, where the amplitude of
the continuous wavelet transform is maximum. The ridges are identified by seeking out the points where the
continuous wavelet transform coefficients take on local maximum values: for each value of b, we obtain a
value of a such as jWc½x�ðaðbÞ; bÞj ¼ maxa jWc½x�ða; bÞj. To obtain the ridge, the dilatation parameter a ¼ aðbÞ

has to be calculated in order to maximize the analysing wavelet ĉ
n

a _jðbÞð Þ, that is using the modified Morlet
wavelet, for a ¼ aðbÞ ¼ o0= _jðbÞ. The values of the continuous wavelet transform that are restricted to the
ridge are the skeleton of the continuous wavelet transform. We obtain

Wc x½ �ðaðbÞ; bÞ ¼

ffiffiffiffiffiffiffiffiffi
aðbÞ

p
2

ffiffiffiffiffiffiffi
Np
p

AðbÞejjðbÞ. (42)

It is important to note that the real components of the continuous wavelet transform along the ridge are
directly proportional to the signal given by Eq. (2) and from Eq. (42) we obtain

AðbÞ ¼ 2
jWc½x�ðaðbÞ; bÞjffiffiffiffiffiffiffi

Np
p ffiffiffiffiffiffiffiffiffi

aðbÞ
p , (43)

jðbÞ ¼ ArgðWc x½ �ðaðbÞ; bÞÞ. (44)

The ridge and the skeleton of the continuous wavelet transform will be used for the estimation of the
instantaneous amplitude AðtÞ and instantaneous angular frequency _jðtÞ. From Eqs. (43) and (44) we can
compute _AðtÞ and _bðtÞ ¼ _jðtÞ � on that will be used with Eqs. (14) and (23) to identify nonlinearities on
damping and stiffness and quantify their values.
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Finally, we use the following procedure for the identification and quantification of nonlinearities in
vibrating systems. Once the free response of the mechanism has been measured the skeleton of the continuous
wavelet transform is extracted to obtain the envelope A(t) and its derivative _AðtÞ. We form then the equation
_AðtÞ ¼

Pp
i¼0 ciA

iðtÞ. If p ¼ 1, we obtain the equation of a straight line and from the slope of this line we
estimate c1 and the damping coefficient from Eq. (15). If pa1, a polynomial is obtained. The coefficients c0,
c1; . . . ; cp of the polynomial, of a specified degree p, are those that best fit the data in a least-squares sense.
Once the coefficients c0, c1; . . . ; cp have been computed the damping coefficients are estimated from Eq. (15).
From the skeleton of the wavelet transform we extract also the phase jðtÞ and its derivative _jðtÞ, representing
the instantaneous angular frequency of the system. Representations of vibration behaviour in the form of
curves of free vibration envelope versus instantaneous frequency are called backbone curves. For linear
systems a backbone does not depend of the envelope and is constant. For systems with nonlinearities on
stiffness the backbone is not constant and following the form of the backbone we obtain a softening system or
a hardening system. The backbone is obtained from _jðtÞ ¼ on þ rqAq�1ðtÞ and the natural frequency on is
estimated from the backbone for AðtÞ ¼ 0. The degree q of the polynomial and the coefficient rq are obtained
by minimization of the normalized root mean square error (RMSE) between the measured value of the
instantaneous angular frequency _jðtÞ obtained from the skeleton of the continuous wavelet transform and the
identified value ~_jðtÞ of the mechanical model

RMSEð ~_jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
i¼1 ½ _jðtiÞ � ~_jðtiÞ�

2PT
i¼1 _jðtiÞ

2

s
, (45)

where T is the number of samples. The value of the normalized root mean square error is a measure of the
accuracy of the fit. Once rq has been obtained the stiffness coefficient is estimated from Eq. (24). For multi-
component signals we use the time–frequency localization properties of the continuous wavelet transform and
the property of linearity. It is possible to follow for each ith mode the envelope decay AiðtÞ, the phase
variations jiðtÞ, their derivatives and estimate nonlinearities.

4. Applications

4.1. Numerical examples

In order to show the usefulness of nonlinearities identification and quantification procedures, simulations
were performed. The simulated data was corrupted by zero mean Gaussian noise. The signal-to-noise ratio
(SNR) is defined as SNR ¼ 10 log10ðvarðsignalÞ=varðnoiseÞÞ.

4.1.1. System with viscous damping and cubic stiffness nonlinearities

The first example considered involves a sdof system with viscous damping and cubic stiffness nonlinearities.
The equation of motion is of the kind:

€xðtÞ þ m1 _xðtÞ þ o2
nxðtÞ þ Z3x3ðtÞ ¼ 0, (46)

where m1 ¼ 0:7 s�1; on ¼ 20 rad s�1; Z3 ¼ 500 (m s)�2. The system was simulated using a fourth-order
Runge–Kutta procedure with initial displacement xð0Þ ¼ 0:5m. The number of data samples was 2048 and the
time record 12 s. The signal was additionally corrupted by zero mean Gaussian noise with SNR ¼ 15 dB.Fig. 1
shows the response of the noisy signal. Fig. 2 shows the continuous wavelet transform amplitude for the noisy
signal using the traditionally Morlet wavelet given by Eq. (32). To improve the resolution we choose the
modified Morlet wavelet given by Eq. (34) and determine the parameter N by minimization of the wavelet
entropy (38). As shown in Fig. 3 the minimal value of N is 13. This value is the optimal value used in the
modified Morlet wavelet. Fig. 4 shows the amplitude of the continuous wavelet transform for the noisy signal
and its ridge when N ¼ 13. From the ridge we extract the skeleton of the continuous wavelet transform. The
real part of the skeleton gives the recovered signal. Fig. 5 shows the comparison between the theoretical free
response obtained from Eq. (46) in solid line and the identified free response obtained from the skeleton of the
continuous wavelet transform in dashed line. These plots are in good agreement apart from the beginning and
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Fig. 1. Free response function for the oscillator with viscous damping and cubic stiffness (SNR ¼ 15 dB).

Fig. 2. Continuous wavelet transform amplitude for the noisy signal with N ¼ 2.

Fig. 3. Variations of the wavelet entropy.
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Fig. 4. Continuous wavelet transform amplitude and its ridge for the noisy signal with N ¼ 13.

Fig. 5. Theoretical free response (solid line) and recovered free response from the skeleton of the continuous wavelet transform (dashed

line) (SNR ¼ 15 dB).

Fig. 6. Variations of _A as a function of A from the skeleton of the continuous wavelet transform (solid line) and from the identified

mechanical system (dashed line).
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the end of the data due to edge effect. The problem of edge effect has been studied by Slavic et al. [9], Le and
Argoul [23], Kijewski and Kareem [24]. Note that the edge effect can be reduced by adding zeros or by adding
negative values of the signal at the beginning and the end of the signal [24]. The modified signal is called
‘‘signal padding’’. The envelope of the identified signal obtained from Eq. (43) is also plotted in Fig. 5. Fig. 6
shows the variations of _A as a function of A. The characteristics of the analysed system obtained from the
skeleton of the continuous wavelet transform given by a solid line, show very good agreement with the
identified characteristics given by a dashed line and obtained from the oscillator model. This figure clearly
shows the presence of viscous damping in the system since we obtain a straight line. From the slope of this line
we estimate the damping coefficient m1 since _A ¼ c1A ¼ �m1A=2. Fig. 7 shows the backbone curve of the
analysed system (solid line) obtained from the skeleton of the wavelet transform and the backbone curve of the
identified system (dashed line). From this plot we obtain the value of f n for A ¼ 0. Table 1 shows the RMSE
between measured values of the instantaneous angular frequency _jðtÞ obtained from the skeleton of the
wavelet transform and identified values ~_jðtiÞ of the estimated oscillator model for different orders q and values
of rq. It is clear that the optimal value is q ¼ 3, we have then a cubic stiffness nonlinearity. From Eqs. (23) and
(24) we obtain _jðtÞ ¼ on þ 3Z3A

2ðtÞ
�
8on and we can compute from this expression the value of Z3. Table 2
Fig. 7. Backbone curves for the measured (solid line) and identified mechanical system (dashed line).

Table 1

Estimation of the order q for the oscillator with viscous damping and cubic stiffness nonlinearities

q q ¼ 1 q ¼ 3 q ¼ 5 q ¼ 7

o ¼ oðAÞ o ¼ on þ
Z1
2on

o ¼ on þ
3
8

Z3
on

A2 o ¼ on þ
5
16

Z5
on

A4 o ¼ on þ
35
128

Z7
on

A6

RMSEð ~_jÞ 0.0130 1.7291e�004 0.0055 0.0082

Table 2

Parameter identification for the oscillator with viscous damping and cubic stiffness nonlinearities

Parameters m1 (s�1) Dm1 (%) on (rad s�1) Don (%) Z3 (m s)�2 DZ3 (%)

Exact 0.7 20 500

Identified, SNR ¼N 0.702 0.3 20.005 0.03 502.044 0.41

Identified, SNR ¼ 20 dB 0.702 0.3 20.007 0.04 497.265 �0.55

Identified, SNR ¼ 15 dB 0.690 �1.4 20.018 0.10 495.175 �0.97
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shows the system parameter identification and the errors in per cent between exact values and identified values
for different levels of Gaussian noise added to the data. Even with important noise satisfactory results are
obtained.
4.1.2. System with composite damping and nonlinear stiffness

The second example considered involves a sdof system with composite damping including Coulomb, linear
and quadratic damping and a cubic stiffness nonlinearity. The equation of motion is

€xþ m0 sgnð _xÞ þ m1 _xþ m2 _x _xj j þ o2
nxþ Z3x

3 ¼ 0 (47)

with m0 ¼ 0:13m s�2; m1 ¼ 0:6 s�1; m2 ¼ 0:1m�1; on ¼ 20 rad s�1; Z3 ¼ 500 (m s)�2. The free response of the
system was simulated using a fourth-order Runge–Kutta procedure with initial displacement xð0Þ ¼ 0:5m.
The number of data samples was 2048 and the time record 9 s. Fig. 8 shows the amplitude of the continuous
wavelet transform and its ridge. From the ridge we extract the skeleton of the continuous wavelet transform.
Fig. 9 gives a comparison between real part of the continuous wavelet transform skeleton obtained from the
ridges and the theoretical free response. The envelope of the identified signal is also plotted. This, apart the
Fig. 8. Continuous wavelet transform amplitude and its ridge for the oscillator with composite damping and nonlinear stiffness.

Fig. 9. Theoretical free response (solid line) and recovered free response from the skeleton of the continuous wavelet transform (dashed

line).
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Fig. 10. (a) Backbone curves for the measured (solid line) and identified mechanical system (dashed line); (b) variations of _A as a function

of A for the measured (solid line) and identified mechanical system (dashed line).

Table 3

Parameter identification for the oscillator with composite damping and cubic stiffness nonlinearities

Parameters m0 (m s�2) Dm0 (%) m1 (s�1) Dm1 (%) m2 (m�1) Dm2 (%)

Exact 0.13 0.6 0.1

Identified, SNR ¼N 0.1297 �0.2 0.6235 3.9 0.0974 �2.6

Identified, SNR ¼ 20 dB 0.1343 3.3 0.5941 �1 0.1025 2.5

Identified, SNR ¼ 15 dB 0.1217 �6.3 0.6247 4.1 0.0981 �1.9%

Parameters on (rad s�1) Don (%) Z3 (m s)�2 DZ3 (%)

Exact 20 500

Identified, SNR ¼N 19.993 �0.035 507.45 1.5

Identified, SNR ¼ 20 dB 19.982 �0.09 526.01 5.2

Identified, SNR ¼ 15 dB 19.971 �0.45 545.99 9
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beginning and the end of the data, shows perfect match of signals. Fig. 10 shows the backbone curves and the
variations of _A as a function of A for the measured and identified mechanical system. These results clearly
displays the nonlinear characteristics of the system. The natural frequency is estimated from the backbone
curve for A ¼ 0; the order q and the coefficient of nonlinear stiffness are obtained using the RMSEð ~_jÞ
procedure described previously. Damping coefficients are estimated from a polynomial interpolation of the
continuous parabola obtained in Fig. 10(b). The characteristics obtained from the skeleton of the continuous
wavelet transform given by a solid line, show very good agreement with the theoretical characteristics
identified from the oscillator model and given by a dashed line. The estimated values of parameters and their
errors for different levels of noise are presented in Table 3. The results are again satisfactory.
4.1.3. 2dof system with nonlinear stiffness

A 2dof system with cubic stiffness nonlinearity is considered. Fig. 11 shows the 2dof the system. The
differential equations governing the system are

m1 €x1 þ ðc1 þ c2Þ _x1 þ ðk1 þ k2Þx1 � k2x2 � c2 _x2 � k4x
3
1 ¼ 0,

m2 €x2 þ ðc2 þ c3Þ _x2 þ ðk2 þ k3Þx2 � k2x1 � c2 _x1 ¼ 0 ð48Þ

with m1 ¼ m2 ¼ 1 kg; c1 ¼ 0:08N sm�1; c2 ¼ 0:03N sm�1; c3 ¼ 0:05N sm�1; k1 ¼ 3Nm�1; k2 ¼ 10Nm�1;
k3 ¼ 5Nm�1; k4 ¼ 170Nm�3. The eigenfrequencies of the linear system are f 1 ¼ 0:316Hz and f 2 ¼ 0:780Hz.
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Fig. 12. Free response functions for the 2dof system: (a) x1ðtÞ; (b) x2ðtÞ.

Fig. 11. 2dof system with nonlinearities on stiffness.

Fig. 13. Continuous wavelet transform amplitude and its ridge for the 2dof system from x2ðtÞ.
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The free response of the system was simulated using a fourth-order Runge–Kutta procedure with initial
displacements x1ð0Þ ¼�0.14m and x2ð0Þ ¼ 0:04m. Fig. 12 shows the free responses x1ðtÞ and x2ðtÞ of the
system. The continuous wavelet transform is applied to the response x2ðtÞ. Analogous results are obtained if
we consider x1ðtÞ. The amplitude of the continuous wavelet transform and the ridge are given in Fig. 13. Two
vibration modes can be observed. It has been shown in Section 3 that the continuous wavelet transform is a
signal decomposition procedure working as a filter in the time-scale (or time–frequency) domain. It is possible
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Fig. 14. Measured mode in time domain from the skeleton of the continuous wavelet transform and its envelope: (a) first mode; (b) second

mode.

Fig. 15. (a) Backbone curves for the measured (solid line) and identified (dashed line) first mode; (b) variations of _A as a function of A for

the measured (solid line) and identified (dashed line) first mode.
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to isolate each mode and to follow the envelope decay and the phase variation in time for each isolated mode.
We can then identify and quantify nonlinearities of each mode. The validity of this decoupling procedure is
strictly linked with the wavelet frequency resolution, that is with the continuous wavelet transform capability
of separating close modes. The ridge detection procedure was applied twice, separately for each mode. Fig. 14
shows the measured modes in time domain obtained from the real part of the skeleton of the continuous
wavelet transform. The backbones for these two modes and the variations of derivative of amplitude are also
plotted in Figs. 15 and 16. The backbones clearly show a softening system with cubic stiffness nonlinearities
which is confirmed by the computation of RMSEð ~_jÞ: its minimum value is obtained for q ¼ 3. Figs. 15(b)
and 16(b) show the presence of viscous damping, since we obtain a straight line which pass by the origin.
The characteristics obtained from the skeleton of the continuous wavelet transform given by a solid line,
show very good agreement with the identified characteristics of the 2dof system given by a dashed line.
The estimated values of parameters with the computation of RMSEð ~_jÞ for each mode are presented in
Tables 4 and 5 where a noise of level SNR ¼ 15 dB has been added to the signal. The results obtained are
satisfactory.
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Fig. 16. (a) Backbone curves for the measured (solid line) and identified (dashed line) second mode; (b) variations of _A as a function of A

for the measured (solid line) and identified (dashed line) second mode.

Table 4

Parameter identification for the 2dof system without noise

Mode fn (Hz) m1 (s�1) Z3 (m s)�2 RMSEð ~_jÞ

1 0.316 0.067 302 5.5� 10�4

2 0.780 0.128 157 9� 10�5

Table 5

Parameter identification for the noisy 2dof system (SNR ¼ 15 dB)

Mode fn (Hz) m1 (s�1) Z3 (m s)�2 RMSEð ~_jÞ

1 0.316 0.068 296 14� 10�4

2 0.781 0.127 134 25� 10�4
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4.2. Experimental measurements

4.2.1. Experiment nonlinear system

Experiments were carried out at the Applied Mechanics Laboratory of Besanc-on. The structure used for the
experiment was a mild steel clamped-free beam mounted so that its motion was confined to the horizontal plane
as shown in Fig. 17. Nonlinearities on stiffness and damping were created punctually on points 1 and 2 via a
negative feedback. A displacement sensor was placed at measurement point 1. The signal obtained was then
passed through two multiplier networks to obtain x3ðtÞ. The cubic signal was amplified using a power amplifier,
we can then obtain different levels of nonlinearities on stiffness. The signal is passed through an electromagnetic
shaker to obtain a negative feedback. A nonlinearity on stiffness of the form Z3x

3ðtÞ is then created.
A velocity sensor was placed at measurement point 2 and the signal obtained was then passed through a

rectifier network and a multiplier network to obtain _x2ðtÞ sgn _xðtÞð Þ. The signal was amplified using a power
amplifier, we can then obtain different levels of nonlinearities on damping. This signal was passed through an
electromagnetic shaker to obtain a negative feedback. A nonlinearity on damping of the form m2 _x

2ðtÞ sgn _xðtÞð Þ

is then obtained. The beam was excited on point 3 using an electromagnetic exciter. The excitation was stopped
and the free response of the system was recorded. The layout of the feedback loop is shown in Fig. 17. Even if
the beam is a multi dof system, the study is focused on the identification of a sdof: the first mode of vibration.
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Fig. 17. Feedback loop for the introduction of nonlinearities and experimental system.
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4.2.2. Nonlinearities on stiffness

Following the gain obtained from the power amplifier used in the experimental procedure, different values
of nonlinearities on stiffness are considered on point 1. In our application three tests have been performed
corresponding qualitatively to a weak, a medium and a strong nonlinearity on stiffness. The parameter
identification and quantification procedure was performed as previously on the base of decaying envelopes.
More precisely we compute the derivative of amplitude _A as a function of the amplitude A and backbone
curves. The analysed vibration data shown in Fig. 18(a) is a free response obtained from the experimental test
beam with a medium cubic stiffness nonlinearity, using the sensor displacement on point 1. The excitation was
stopped at t ¼ 0:9 s and the free response of the beam was considered in the continuous wavelet transform to
obtain modal parameters. Fig. 18(b) shows the measured and the recovered free response of the system
obtained from the real part of the continuous wavelet transform skeleton. These plots are in good agreement
apart from the beginning and the end of the data due to edge effect. The envelope of the recovered signal is
also plotted. The natural frequency is estimated from the backbone curve shown in Fig. 18(c). The order q and
the coefficient of nonlinear stiffness is obtained by minimization of the root mean square error between the
instantaneous frequency measured from the skeleton of the continuous wavelet transform and the
instantaneous frequency of the estimated oscillator model. The measured and identified backbones curves
are presented in Fig. 18(c) showing very good agreement. Fig. 18(d) shows the variations of _A as a function of
A for the measured and identified signal. This figure clearly shows the viscous damping of the system since we
obtain a straight line passing by the origin. The estimated values of parameters for different values of stiffness
are presented in Table 6.

The normalized values of RMSEð ~_jÞ and RMSEð ~_AÞ are given in Table 6. These values are very small and we
can conclude that the identification of nonlinearities on stiffness and their quantification give satisfactory
results. We can conclude that the model of a Duffing oscillator with weak viscous damping gives a good fit for
the first mode of this experimental beam. Note, however, that the damping in clamped beam is in general
hysteretic and not viscous. Here an equivalent viscous damping has been identified.

4.2.3. Nonlinearities on stiffness and composite damping

Nonlinearities on stiffness are always considered on point 1 and nonlinearities on damping are added on
point 2. The parameter identification and quantification procedure was performed as previously on the basis
of the measured backbone curve and the decaying envelope from which we obtain the variations of _A as a



ARTICLE IN PRESS

Table 6

Identified results for the beam with nonlinearities on stiffness

Tests Parameters

m1 (s�1) fn (Hz) Z3 (m s)�2 RMSEð ~_jÞ RMSEð ~_AÞ

Weak stiffness 7.073 24.10 224.813 1.953e�004 0.0035

Medium stiffness 6.962 24.08 490.553 1.869e�004 0.0065

Strong stiffness 6.999 23.97 1148.7 4.660e�005 0.0012

Fig. 18. (a) Measured signal from the displacement sensor on point 1; (b) measured free response (solid line) and identified free response

from the skeleton of the continuous wavelet transform (dashed line); (c) backbone curves for the measured (solid line) and identified

system (dashed line); (d) variations of _A as a function of A for the measured (solid line) and identified system (dashed line).
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function of A. Fig. 19(a) shows the measured time response obtained from the displacement sensor on point 1
and the recovered time response obtained from the skeleton of the continuous wavelet transform. These plots
show perfect match of both signals. From the measured signal we plot the amplitude of the wavelet transform
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Fig. 19. (a) Measured free response (solid line) and recovered free response from the skeleton of the continuous wavelet transform (dashed

line); (b) wavelet transform amplitude and ridge; (c) backbone curves for the measured (solid line) and identified system (dashed line); (d)

variations of _A as a function of A for the measured (solid line) and identified system (dashed line).

Table 7

Identified results for the beam with nonlinearities on stiffness and damping

Parameters

m1 (s�1) m2 (m�1) fn (Hz) Z3 (m s)�2 RMSEð ~_jÞ RMSEð ~_AÞ

Identified 7.214 0.205 23.98 1135 2.02e�004 0.0026

M.-N. Ta, J. Lardiès / Journal of Sound and Vibration 293 (2006) 16–37 35
and its ridge in Fig. 19(b). Finally, Figs. 19(c) and (d) show backbone curves and measured and identified plots
of _A as a function of A. The estimated values of parameters are presented in Table 7 with the computation of
the normalized root mean square errors: RMSEð ~_jÞ and RMSEð ~_AÞ.
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The small values of RMSEð ~_jÞ and RMSEð ~_AÞ confirms that the identification has provided good results. We
can conclude that the model of a Duffing oscillator with weak viscous and quadratic damping describes
correctly the first mode of this experimental beam.

5. Conclusion

A time-scale analysis is used for identification, classification and quantification of weak nonlinearities on
damping and stiffness in vibrating systems. The proposed approach cannot be applied for all kinds of
nonlinear dynamical systems, in a ‘‘blind way’’, but for oscillators with weak nonlinearities on damping and
stiffness. The procedure is based on the ridges and skeletons of the continuous wavelet transform. While a
great number of authors use the Morlet wavelet function as analysing function, the modified Morlet wavelet
function has been used in this paper. Its time and frequency resolution can be altered by adjusting the value of
a parameter N. The optimal value of N has been obtained by minimization of the wavelet entropy. The
effectiveness of the proposed method has been demonstrated using numerical results for a sdof and 2dof
system with nonlinearities on damping and stiffness. The procedure was also tested experimentally on a
clamped beam where nonlinearities on damping and stiffness have been added. These experimental results
validate the procedure of identification and quantification of weak nonlinearities on damping and stiffness
based on the ridges and skeletons of the continuous wavelet transform. The procedure is applied to free
responses of vibrating systems and has the advantage of not requiring knowledge of the excitation forces.
However, some effort should be spent for the extension of the technique to the analysis of industrial systems
with nonlinearities. The continuous wavelet transform technique has the advantage that it requires to measure
only displacements or velocities or accelerations of the system. It is not necessary to measure displacements
and velocities and accelerations simultaneously as in the case of non-parametric methods.
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